A Novel Methodology for the Synthesis of Cyclic Carbonates Based on the Palladium-Catalyzed Cascade Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ols with Phenols, Involving a Novel Carbon Dioxide Elimination-Fixation Process

Masahiro Yoshida,* Mika Fujita, Tooru Ishii, and Masataka Ihara*
Contribution from the Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan

Received January 8, 2003; E-mail: mihara@mail.pharm.tohoku.ac.jp

Abstract

A palladium-catalyzed CO_{2}-recycling reaction has been developed. Reaction of 4-methoxycar-bonyloxy-2-butyn-1-ols with phenols, carried out in the presence of a palladium catalyst, produces phenoxysubstituted cyclic carbonates by way of a pathway involving a CO_{2} elimination-fixation. A variety of propargylic alcohols and phenols participate in these reactions which yield cyclic carbonates with high efficiencies. Stereoselective construction of trans-cyclic carbonates is achieved by using nonsymmetric substrates. Highly enantioselective reactions occur when (S)-BINAP is used as a ligand. Reaction of 4-phenoxycarbonyloxy-2-butyn-1-ol in the presence of the palladium catalyst yields the corresponding cyclic carbonates via a three-component decomposition-reconstruction process.

Introduction

The chemistry of CO_{2} has received much attention recently because of its potential use as an abundant carbon source and its indirect role as an environmental pollutant. The transformation of CO_{2} into organic substances represents an attractive area of study in both organic and green chemistry. ${ }^{1}$ Transition metalmediated reactions are among the most common methods to convert CO_{2} into organic compounds. ${ }^{2}$ An example of a process of this type is the palladium-catalyzed reaction of vinyl epoxides and CO_{2} to afford cyclic carbonates (Scheme 1), reported independently by Fujinami and Trost and their co-workers. ${ }^{3,4}$

[^0]Scheme 1

This reaction proceeds via the formation of the π-allylpalladium complex followed by the incorporation of carbon dioxide.

In contrast, decarboxylation is a familiar process in organic chemistry, and many reactions are known in which elimination of CO_{2} is the driving force. ${ }^{5}$ For example, allylic and propargylic carbonates undergo facile palladium-catalyzed decarboxylation to generate π-allyl- and allenylpalladium complexes. These complexes react with nucleophiles to give substitution products (Scheme 2). ${ }^{6,7}$ In these decarboxylation reactions, the eliminated CO_{2} is a byproduct. Importantly, no examples exist in which the eliminated CO_{2} is incorporated into the product molecule.
We have recently devised a new reaction, termed "recycling of $\mathrm{CO}_{2} "$ (Figure 1), in which a substrate bearing a CO_{2} component undergoes initial catalyst promoted decarboxylation

[^1]

Figure 1. Concept of "recycling of CO_{2} ".
Scheme 2

Scheme 3

to give an intermediate and CO_{2}. Reaction of the intermediate is then followed by CO_{2} incorporation to afford a $\mathrm{CO}_{2^{-}}$ containing product. This concept has been used to develop a new CO_{2}-recycling process as part of a novel methodology for the synthesis of cyclic carbonates, involving the palladiumcatalyzed cascade reaction of 4-methoxycarbonyloxy-2-butyn1 -ols with phenols (Scheme 3). ${ }^{8}$ In this reaction, palladiuminduced decarboxylation of the substrate is followed by fixation of the resulting CO_{2}. The results of a thorough investigation of this process are presented below.

Results and Discussion

Initial investigations of the novel CO_{2}-recycling reaction were carried out with the substrates 1-(3-methoxycarbonyloxy-2propynyl)cyclopentanol (1a) and 4-methoxyphenol (2a). Reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and $20 \mathrm{~mol} \%$ dppe in dioxane at $80^{\circ} \mathrm{C}$ in a sealed tube for 2 h yields the cyclic carbonate $\mathbf{3 a a}(53 \%)$ along with the dihydrofuran 4aa (12\%) (Table 1, entry 1). The yield of 3aa

[^2]Table 1. Formation of Cyclic Carbonate 3aa by the CO_{2} Refixation Reaction of Propargylic Carbonate 1a with p-Methoxyphenol

${ }^{a}$ Isolated yields. ${ }^{b}$ The reaction was carried out for $7 \mathrm{~h} .{ }^{c} 40 \mathrm{~mol} \% \mathrm{PPh}_{3}$ was used.

Scheme 4

decreases to 40%, and epoxide $\mathbf{5 a}$ a is produced in 23% yield along with $\mathbf{4 a a}(15 \%)$ when the reaction is carried out at 100 ${ }^{\circ} \mathrm{C}$ (entry 2). Lowering the reaction temperature (entries 3 and 4) results in increased yields of 3aa, an optimal yield of 3aa of 89% being obtained in the reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ at room temperature (entry 4). When other bidentate and monodentate phosphine ligands (e.g., dppp, dppb, dppf, and PPh_{3}) are employed, 3aa is produced in high yields (entries 5-9). Large amounts of $\mathbf{4 a a}$ and $\mathbf{5 a a}$ are formed in the reaction at $80^{\circ} \mathrm{C}$, in which $\mathrm{P}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$ is used as the ligand (entry 9).

A plausible mechanism for the formation of products $\mathbf{3 - 5}$ is shown in Scheme 4. In this process, the palladium catalyst promotes decarboxylation of the propargylic carbonate $\mathbf{1}$ to generate the allenylpalladium methoxide $\mathbf{6}$ and CO_{2}. Reacting as a π-propargylpalladium complex $\mathbf{7 , 9} 6$ undergoes nucleophilic attack by phenoxide to produce the π-allylpalladium intermedi-

Table 2. Reactions of Propargylic Carbonate 1a with Phenols 2a-h

	 1a				
entry	X	temp (${ }^{\circ} \mathrm{C}$)	time (h)	product	yield (\%)
1	2a: 4-OMe	50	2	3 aa	85
2	2b: 2 -OMe	rt	3	3ab	90
3	2c: 4 -Me	rt	5	3 ac	87
4	2d: H	rt	9	3 ad	81
5	2e: 1-naphthol	rt	4	3 ae	74
6	2f: $4-\mathrm{Cl}$	50	2	3af	70
7	2g: 4-F	50	2	3 ag	54
8	2h: 4-acetyl	50	5	3ah	36

ate $\mathbf{8},{ }^{10}$ which re-adds CO_{2} to afford the carbonate 9 . Subsequent cyclization of $\mathbf{9}$ gives the phenoxy-substituted cyclic carbonate 3. Dihydrofuran $\mathbf{4}$ and epoxide 5 result from direct cyclization of π-allylpalladium intermediate $\mathbf{8} .^{11}$ To the best of our knowledge, the pathway leading to cyclic carbonate 3 represents the first example of an efficient CO_{2} elimination-fixation process as part of a decarboxylation reaction. ${ }^{12}$

To examine the scope of this reaction, various substituted phenols were used as substrate. The corresponding cyclic carbonates 3aa-3ac are formed in high yields when phenols bearing an electron-donating group $\mathbf{2 a - 2 c}$ are used (Table 2, entries $1-3$). Reactions of phenol ($\mathbf{2 d}$) and 1-naphthol (2e) also form the respective carbonates $\mathbf{3 a d}$ and $\mathbf{3 a e}$ in good yields (entries 4 and 5). In contrast, carbonates $\mathbf{3 a f} \mathbf{- 3 a h}$ are produced in lower yet still acceptable yields in reactions employing electron-withdrawing-group-substituted phenols $2 \mathbf{f}-\mathbf{2 h}$ (entries 6-8).

The results of reactions of propargylic carbonates, containing cycloalkanol moieties of various ring sizes, with phenol 2a are summarized in Table 3. Reactions of substrates $\mathbf{1 b} \mathbf{- 1 d}$, which possess six- to eight-membered rings, provide the corresponding cyclic carbonates 3ba-3da in high yields (entries 2-4). When the cyclobutyl-substituted substrate $\mathbf{1 e}$ is subjected to the palladium-catalyzed reaction at room temperature, cyclic carbonate 3ea is formed in 63% yield along with the cyclopentanone $\mathbf{1 0}$ in 6% yield (entry 5). The byproduct $\mathbf{1 0}$ is likely produced by ring expansion of the four-membered ring of the π-allypalladium intermediate followed by the double bond isomerization (Scheme 5). ${ }^{9}$ Interestingly, the ratio of 3ea to 10 can be dramatically changed by altering the reaction temperature (entries 6 and 7). Accordingly, the yield of 3ea

[^3]Table 3. Cascade Reactions of Propargyl Carbonate with p-Methoxyphenol: Part 1^{a}
entry
${ }^{a}$ Reactions were carried out in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, $20 \mathrm{~mol} \%$ dppe, and 1.1 equiv of p-methoxyphenol in dioxane under an argon atmosphere in a sealed tube for $2-5 \mathrm{~h}$.

Scheme 5

decreases to 49%, and that of $\mathbf{1 0}$ increases to 22% yield in the reaction at $50^{\circ} \mathrm{C}$ (entry 6), while $\mathbf{1 0}$ is the exclusive product (81%) of the reaction conducted at $80^{\circ} \mathrm{C}$ (entry 7).

Various acyclic substrates were also subjected to the pal-ladium-catalyzed reaction conditions described above. The substrate $\mathbf{1 f}$ with dimethyl substitution undergoes reaction with phenol 2a under an argon atmosphere to give cyclic carbonate 3fa in 83% yield (Table 4, entry 1). Reaction of diethylsubstituted substrate $\mathbf{1 g}$ also affords cyclic carbonate $\mathbf{3 g a}$ (entry 3). Substrates $\mathbf{1 h}, \mathbf{1 i}$, and $\mathbf{1} \mathbf{j}$, which contain dipropyl, dipentyl, and diisopropyl groups, are transformed to the corresponding products $\mathbf{3 h a}$, $\mathbf{3 i a}$, and $\mathbf{3 j a}$ in moderate yields (entries 5, 7, 9). It is clear that bulky side chain substituents, as in $\mathbf{1 k} \mathbf{- 1 m}$, decrease the reactivity of the substrates, presumably a result of steric effects which decrease the rate of the CO_{2} fixation step (entries $11,13,15$). The yields of the cyclic carbonate forming reactions dramatically improve when the processes are conducted under a CO_{2} atmosphere (entries $2,4,6,8,10,12,14$, 16). Finally, the reaction of $\mathbf{1 n}$, which has no substituents at the propargylic position, does not lead to formation of a cyclic carbonate. Rather, the α, β-unsaturated aldehyde 11 is formed as a mixture of geometric isomers in 49% yield (entry 17). In this case, β-elimination of palladium from the intermediate

Table 4. Cascade Reactions of Propargylic Carbonate with p-Methoxyphenol: Part 2^{a}
entry
${ }^{a}$ Reactions were carried out in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, $20 \mathrm{~mol} \%$ dppe, and 1.1 equiv of p-methoxyphenol in dioxane for $2-5 \mathrm{~h}$. ${ }^{b}$ The yield in parentheses is based on recovered starting material. ${ }^{c}$ The reaction was carried out under 5 atm of $\mathrm{CO}_{2} .{ }^{d} \mathrm{~A}$ mixture of two geometric isomers ($E: Z=4.3: 1$) was obtained.

Scheme 6

π-allylpalladium complex occurs to give $\mathbf{1 1}$ prior to the CO_{2} fixation step (Scheme 6).

Mechanistic Studies. As shown in Scheme 4, the mechanism proposed for cyclic carbonate formation involves sequential CO_{2} elimination and fixation. Another pathway for this process, in which intramolecular CO_{2}-transfer takes place via coordination to palladium, is possible. To examine whether CO_{2} dissociates from the substrate in this reaction, we conducted the reactions in both the presence and the absence of added CO_{2} (Scheme 7). While the reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ under argon atmosphere gives cyclic carbonate $\mathbf{3 a}$ a in 85% yield, the process carried out under 1 atm of CO_{2} leads to a 96% yield of $\mathbf{3 a a}$. In addition, when the reaction is run under bubbling argon to remove the

Scheme 7. Reactions "in the Presence" and "in the Absence" of CO_{2}

Table 5. Reactions of Propargylic Compounds with p-Methoxyphenol under a CO_{2} Atmosphere

entry	R	time (h)	yield (\%) ${ }^{\text {a }}$
1	12: Ms	24	53
2	13: Ac	30	28 (58)
3	14: Bz	6	82

${ }^{a}$ The yields in parentheses are based on recovered starting material.

Scheme 8

5ca 16\%
resulting $\mathrm{CO}_{2}, \mathbf{3} \mathbf{a} \mathbf{a}$ is formed in only 21% yield together with $\mathbf{4 a a}(32 \%)$ and $\mathbf{5 a} \mathbf{a}(11 \%)$. The results suggest that the process proceeds through a pathway involving decarboxylation-followed fixation of the liberated CO_{2}.

Reactions of propargylic compounds $\mathbf{1 2 - 1 4}$, which contain non $-\mathrm{CO}_{2}$ liberating leaving groups, under a CO_{2} atmosphere were examined next. Interestingly, propargylic mesylate $\mathbf{1 2}$ reacts with phenol 2a, under an atmosphere of CO_{2} in the presence of DBU, to afford cyclic carbonate 1ga (Table 5, entry 1). The propargylic acetate $\mathbf{1 3}$ and benzoate $\mathbf{1 4}$ are also transformed efficiently to carbonate 1ga (entries 2 and 3). The results indicate that cyclic carbonates are formed by a route in which CO_{2} is incorporated from an external source.

We next performed a crossover experiment with the propargylic carbonate 1b and propargylic benzoate 15 (Scheme 8). Reaction of an equimolar mixture of $\mathbf{1 b}$ and $\mathbf{1 5}$ with phenol 2a in a sealed tube results in production of the cyclic carbonate 3ca (16%), derived from 15, along with the $\mathbf{1 b}$-derived cyclic carbonate 3ba and the epoxide 5ca. It is clear that 3ca arises by reaction of in situ generated CO_{2} formed by decarboxylation of $\mathbf{1 b}$.

Application to the Stereoselective Formation of Cyclic Carbonates. Palladium-catalyzed reactions of unsymmetric

Table 6. Diastereoselective Reactions Using Unsymmetrical Substrates with p-Methoxyphenol ${ }^{a}$
entry
${ }^{a}$ Reactions were carried out in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, $20 \mathrm{~mol} \%$ dppe, and 1.1 equiv of p-methoxyphenol in dioxane for $4-24 \mathrm{~h}$ at $50{ }^{\circ} \mathrm{C}$ in a sealed tube. ${ }^{b} \mathrm{Ar}=p$-methoxyphenyl. ${ }^{c}$ The stereochemistry of the trans-product was determined by ${ }^{1} \mathrm{H}$-NOESY. ${ }^{d}$ The stereochemistry of the products were tentatively assigned by analogy with the ${ }^{1} \mathrm{H}$ NMR spectrum of the other product.
propargylic carbonates were examined next. The substrate $\mathbf{1 0}$, having a β-phenylcyclohexyl group, reacts with phenol 2a to form $\mathbf{3 0 a}$ as a single diastereomer in 58% yield (Table 6, entry 1). The yield of $\mathbf{3 0 a}$ increases to 92% when reaction of $\mathbf{1 0}$ and 2a is conducted under a CO_{2} atmosphere (entry 2). The menthone-derived substrate $\mathbf{1 p}$ is also stereoselectively converted to trans-carbonate 3pa (entries 3 and 4). On the other hand, reactions of the estrone- and camphor-derived propargylic carbonates, $\mathbf{1 q}$ and $\mathbf{1 r}$, afford predominantly epoxides $\mathbf{5 q a}$ and 5ra instead of the corresponding cyclic carbonates (entries 5 and 7). The cyclic carbonate $\mathbf{3 q a}$ was produced together with epoxide $\mathbf{5 q} \mathbf{q}$ from reaction of $\mathbf{1 q}$ under a CO_{2} atmosphere, but no cyclic carbonate was generated from $\mathbf{1 r}$ under these reaction conditions (entry 8). In these cases, it appears that steric crowding of the hydroxyl groups prevents refixation of CO_{2}. The high diastereoselectivities observed in these reactions are likely the result of steric factors which influence the relative energies of the competing transition states for cyclization of the interconverting, isomeric π-allylpalladium intermediates, \mathbf{A} and \mathbf{B} (Scheme 9). Equilibration between \mathbf{A} and \mathbf{B} occurs by $\pi-\sigma-\pi$ isomerization. ${ }^{13}$ It is expected that the transition state for cyclization \mathbf{A}, forming the trans-product, would be of lower energy because of the absence of the $\mathrm{A}_{1,3}$-strain that is present in the transition state derived from \mathbf{B}.

Enantioselective Formation of Cyclic Carbonates. Although a large number of asymmetric reactions of allylic compounds with nucleophiles are known, only a few asymmetric palladium-catalyzed nucleophilic substitution reactions of propargylic substrates have been reported. ${ }^{10 \mathrm{e}}$ In the reaction described above, a new asymmetric center is formed by cyclization of the π-allylpalladium intermediate. We anticipated that the absolute configuration of the newly formed stereogenic center could be controlled by using chiral palladium catalysts. ${ }^{14}$ Indeed, reaction of $\mathbf{1 g}$ with $\mathbf{2 a}$ in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{\circ}$ CHCl_{3} and $20 \mathrm{~mol} \%(S)$-BINAP (16) in THF leads to

Scheme 9. Proposed Transition States for the Diastereoselective Cascade Reaction

generation of the chiral cyclic carbonate (R)-3ga in 31% yield with a 62% ee (Table 7, entry 1). ${ }^{15,16}$ Superior results are obtained by employing dioxane as solvent (entry 2) and when 4 \AA MS is used as an additive (entry 3). Yields are dramatically improved by carrying out the reaction under a CO_{2} atmosphere (75% yield with 71% ee, entry 4), but the $\%$ ee decreases slightly when the reaction is run under 5 atm of CO_{2} (entry 5). The use of (S)-TolBINAP $(\mathbf{1 7})^{17}$ in place of (S)-BINAP results in the formation of $(R)-3 \mathrm{ga}$ in 88% yield with a 67% ee (entry 6). Reactions using other chiral phosphine ligands (e.g., 18, ${ }^{18} \mathbf{1 9},{ }^{19}$ $\mathbf{2 0},{ }^{20}$ and $\mathbf{2 1}^{21}$) do not result in the production of the cyclic carbonate (entries 7-10).

We next evaluated the scope of the (S)-BINAP-promoted asymmetric reaction by using various propargylic carbonates. Treatment of the five-to-eight-membered ring substrates 1a-1d with phenol 2a leads to production of the cyclic carbonates (R)-3aa- $\mathbf{3 d a}$ in moderate yields and enantiomeric puri-

[^4]Table 7. Enantioselective Reactions of $\mathbf{1 g}$ with 2a by Using Chiral Phosphine Ligands 16-21 ${ }^{\text {a,b }}$

		\qquad	 $\mathrm{mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ $\mathrm{mol} \%$ chiral ligand, oxane, $50^{\circ} \mathrm{C}$ sealed tube			
entry	ligand		additive	atmosphere	yield (\%)	ee (\%) ${ }^{\text {c }}$
1	16	THF		argon	31	62
2	16	dioxane		argon	30	71
3	16	dioxane	4 Å MS	argon	34	72
4	16	dioxane	4 Å MS	CO_{2}	75	71
5	16	dioxane	4 Å MS	$\mathrm{CO}_{2}{ }^{\text {d }}$	79	62
6	17	dioxane	4 A MS	CO_{2}	88	67
7	18	dioxane	4 Å MS	CO_{2}	N.R.	
8	19	dioxane	4 Å MS	CO_{2}	N.R.	
9	20	dioxane	4 A MS	CO_{2}	N.R.	
10	21	dioxane	4 A MS	CO_{2}	N.R.	

${ }^{a}$ All reactions are carried out in a sealed tube. ${ }^{b}$ Absolute configurations of 3ga were determined by using Kusumi's MTPA ester procedure. The details were described in the Supporting Information. ${ }^{c}$ Enantiomeric excesses are determined by chiral HPLC (CHIRALPAK AS). ${ }^{d}$ The reaction is carried out under 5 atm of CO_{2}.

Table 8. Enantioselective Reactions of Various Propargylic Carbonates ${ }^{a, b}$

entry	substrate	ArOH	product	yield (\%)	ee (\%) ${ }^{\text {c }}$
1	1a: $\mathrm{R}+\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}$	2 a	$3 \mathbf{a a}^{\text {d }}$	81	23
2	1b: $\mathrm{R}+\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}$	2 a	$3 \mathrm{ba}{ }^{\text {d }}$	84	39
3	1c: $\mathrm{R}+\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6}$	2 a	$3 \mathrm{ca}{ }^{\text {d }}$	74	30
4	1d: $\mathrm{R}+\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{7}$	2a	$3 \mathrm{da}^{d}$	48	53
5	1f: $\mathrm{R}=\mathrm{Me}$	2a	$3 \mathrm{fa}{ }^{\text {d }}$	94	40
6	1j: $\mathrm{R}={ }^{i} \mathrm{Pr}$	2a	$3 \mathbf{j a}^{\text {d }}$	79	63
7	1h: $\mathrm{R}=\mathrm{Pr}$	2a	$3 \mathrm{ha}{ }^{d}$	83	66
8	1i: $\mathrm{R}=\mathrm{Pen}$	2a	$3 \mathbf{i a}^{\text {d }}$	66	71
9	$\mathbf{1 k}: \mathbf{R}=\beta$-phenethyl	2 a	3ka ${ }^{d}$	79	78
10	11: $\mathrm{R}=\beta$-cyclohexylethyl	2 a	31a ${ }^{\text {d }}$	80	85
11^{e}	11	2 a	$31 \mathbf{a}^{d}$	55	89
12	11	2b	31b ${ }^{f}$	83	91
13	11	2e	$31{ }^{\text {g }}$	68	93

[^5]Scheme 10. Proposed Transition States for the Enantioselective Reaction

the cyclic carbonate $\mathbf{3 f a}$ in 94% yield and 40% ee (entry 5). These results show that reactions of the longer chain substrates give cyclic carbonates in higher enantiomeric purities ($>63 \%$ ee) (entries 6-10). Thus, bulky substituents at the β-position of the alkyl side chain result in increased enantioselectivities. The best results are observed for the reaction of the bis- β cyclohexylethyl derivative 11, which yields 3la in 85% ee (entry 10). The enantiomeric purity of 31a rises to 89% ee when the mole ratio of palladium catalyst ($5 \mathrm{~mol} \%$) and (S)-BINAP is changed to $1: 2$, even though the yield of the process decreases to 55% (entry 11). Furthermore, reactions of $\mathbf{1 l}$ with 2 -methoxyphenol 2b and 1-naphthol 2e give the corresponding products 3lb and 3le with high \% ee, the highest (93% ee) being observed in the reaction of $\mathbf{2 e}$ (entry 13).

A proposed rationale for the absolute configurational outcome of the process is based on a consideration of transition state models. Absolute stereochemistry in this process is determined in the step involving cyclization of the π-allylpalladium intermediate, for which there are two possible transition states \mathbf{A} and \mathbf{B}, depicted in Scheme 10. Inspection of the models shows that severe steric repulsion exists between the R-substituent of the substrate and a benzene ring of the BINAP ligand in transition state B. Therefore, reaction should take place preferentially via the more stable transition state \mathbf{A} to provide the (R)-product.

A Three-Component Decomposition-Reconstruction Reaction. 4-Aryloxycarbonyloxy-2-butyn-1-ols, 22 and 23, contain latent nucleophilic phenolic moieties as part of the carbonate leaving groups (Scheme 11). As a result, sequential palladiuminduced elimination of the carbonate group in these substrates followed by decarboxylation should produce phenoxide nucleophiles, capable of adding to the intermediate palladium complex. Interestingly, reactions of $\mathbf{2 2}$ and $\mathbf{2 3}$ with the palladium catalyst afford the corresponding cyclic carbonates 3bd and 3ba in high yields (3ba nearly quantitative). In this process, the substrate decomposes to yield three components, allenylpalladium, phenoxide, and CO_{2}, which then recombine to form cyclic carbonate. Crossover experiments were conducted to confirm that the pathway proposed for this three-component decompositionreconstruction process is actually followed. Treatment of an equimolar mixture of the propargylic carbonates $\mathbf{2 2}$ and $\mathbf{2 4}$ with the palladium catalyst leads to formation of a mixture containing

Scheme 11

240.5 equiv
3 cd $X=$ H 23%
$3 \mathrm{ca} X=\mathrm{OMe} 23 \%$
equal amounts of the four cyclic carbonates 3bd, 3ba, 3cd, and 3ca. This result demonstrates that the phenoxide ion completely dissociates from the propargylic moiety in this process.

Conclusion

The studies described above have resulted in the development of a novel CO_{2}-recycling process involving a palladiumcatalyzed cascade reaction between 4-methoxycarbonyloxy-2-butyn-1-ols and phenols. The cyclic carbonates, formed in this manner, can be viewed as equivalents of α, β-dihydroxyketones, and, as a result, this process should serve as a useful synthetic methodology. trans-Cyclic carbonates are generated with a high degree of stereochemical control in reactions of unsymmetric substrates. By using the chiral phosphine BINAP, we found that asymmetric reactions occur to produce chiral products with high enantioselectivities. Finally, a three-component decompositionreconstruction reaction of phenoxy-substituted propargylic carbonates has been developed. This process efficiently transforms substrates into structurally isomeric products without the concomitant formation of byproducts. Beyond its mechanistic and synthetic interest, this CO_{2}-recycling reaction should gain the attention of scientists searching for new eco-friendly chemical transformations.

Experimental Section

General Procedure for the Palladium-Catalyzed Cascade Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ol with Phenols. Reaction of 1 a with 2 a . To a stirred solution of the propargylic carbonate 1a $(45.2 \mathrm{mg}, 0.228 \mathrm{mmol})$ in dioxane $(4 \mathrm{~mL})$ were added p-methoxyphenol ($31.1 \mathrm{mg}, 0.251 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(11.8 \mathrm{mg}, 0.0114 \mathrm{mmol})$, and dppe $(18.2 \mathrm{mg}, 0.0456 \mathrm{mmol})$ in a sealed tube at room temperature. After stirring was continued for 2 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane-AcOEt ($90: 10 \mathrm{v} / \mathrm{v}$) as eluent to give the cyclic carbonate 3aa $(56.3 \mathrm{mg}, 85 \%)$, dihydrofuran $\mathbf{4 a a}(2.8 \mathrm{mg}, 5 \%)$, and a trace amount of epoxide 5aa as a colorless oil.

General Procedure for the Palladium-Catalyzed Reaction of Propargylic Compounds with p-Methoxyphenol under CO_{2} Atmo-
sphere. To a stirred solution of the propargylic benzoate $\mathbf{1 4}(52.0 \mathrm{mg}$, 0.210 mmol) in dioxane (3 mL) were added p-methoxyphenol 2a $(29.0 \mathrm{mg}, 0.230 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(11.0 \mathrm{mg}, 0.011 \mathrm{mmol})$, dppe $(17.0 \mathrm{mg}, 0.042 \mathrm{mmol})$, and $\mathrm{DBU}(47.0 \mu \mathrm{~L}, 0.320 \mathrm{mmol})$ at room temperature. After stirring was continued under CO_{2} atmosphere for 6 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane- $\operatorname{AcOEt}(92: 8 \mathrm{v} / \mathrm{v})$ as eluent to give the cyclic carbonate 1ga ($50.6 \mathrm{mg}, 82 \%$) as a colorless oil.

Crossover Experiment of $\mathbf{1 b}$ and 15. To a stirred solution of the propargylic carbonate $\mathbf{1 b}(50.0 \mathrm{mg}, 0.236 \mathrm{mmol})$ and propargylic benzoate $15(64.0 \mathrm{mg}, 0.236 \mathrm{mmol})$ in dioxane $(4 \mathrm{~mL})$ were added p-methoxyphenol 2a $(64.0 \mathrm{mg}, 0.519 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(24.0$ $\mathrm{mg}, 0.0236 \mathrm{mmol})$, dppe $(38.0 \mathrm{mg}, 0.0944 \mathrm{mmol})$, and DBU $(53.0 \mu \mathrm{~L}$, 0.354 mmol) in a sealed tube at room temperature. After stirring was continued for 6 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane-AcOEt ($92: 8 \mathrm{v} / \mathrm{v}$) as eluent to give the cyclic carbonate 3ba ($24.0 \mathrm{mg}, 32 \%$), 3ca $(45.0 \mathrm{mg}, 16 \%)$, and epoxide $5 \mathbf{c a}(21.0 \mathrm{mg}, 16 \%)$ as a colorless oil.

General Procedure for the Diastereoselective Palladium-Catalyzed Reaction. To a stirred solution of the propargylic carbonate $\mathbf{1 0}$ $(30.8 \mathrm{mg}, 0.107 \mathrm{mmol})$ in dioxane $(2 \mathrm{~mL})$ were added p-methoxyphenol 2a $(14.6 \mathrm{mg}, 0.118 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(5.5 \mathrm{mg}, 5.3$ $\mu \mathrm{mol})$, and dppe $(8.5 \mathrm{mg}, 0.0214 \mathrm{mmol})$ in a sealed tube under 1 atm of CO_{2} at room temperature. After stirring was continued for 16 h at $50^{\circ} \mathrm{C}$, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane- $\operatorname{AcOEt}(92: 8 \mathrm{v} / \mathrm{v})$ as eluent to give the cyclic carbonate $\mathbf{3 0 a}(37.5 \mathrm{mg}, 92 \%)$ as colorless prisms.

General Procedure for the Enantioselective Palladium-Catalyzed Reaction. To a stirred solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(10.4 \mathrm{mg}, 10.0$ $\mu \mathrm{mol})$ in dioxane $(1.4 \mathrm{~mL})$ was added (S)-BINAP $16(24.9 \mathrm{mg}, 40.0$ $\mu \mathrm{mol})$ in a sealed tube at room temperature. After stirring was continued for 30 min at $50^{\circ} \mathrm{C}$, a solution of the propargylic carbonate $\mathbf{1 g}(40.0$ $\mathrm{mg}, 0.20 \mathrm{mmol})$, p-methoxyphenol ($27.3 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dioxane $(1.3 \mathrm{~mL})$, and $4 \AA$ MS (80 mg , activated powder) was added to this reaction mixture, and the mixture was stirred for 3.5 h at $50^{\circ} \mathrm{C}$ under 1 atm of CO_{2}. The reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane- $\mathrm{AcOEt}(92: 8 \mathrm{v} / \mathrm{v})$ as eluent to give the cyclic carbonate (R)-3ga ($43.2 \mathrm{mg}, 75 \%, 71 \%$ ee) as a colorless oil.

General Procedure for the Palladium-Catalyzed Reaction of 4-Aryloxycarbonyloxy-2-butyn-1-ol: The Reaction of 23. To a stirred solution of the propargylic carbonate 23 ($42.1 \mathrm{mg}, 0.138$ $\mathrm{mmol})$ in dioxane $(3 \mathrm{~mL})$ were added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(7.1 \mathrm{mg}, 6.9$ $\mu \mathrm{mol})$ and dppe $(10.9 \mathrm{mg}, 0.0274 \mathrm{mmol})$ in a sealed tube at room temperature. After stirring was continued for 2 h at the same temperature, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane-AcOEt (90:10 v/v) as eluent to give the cyclic carbonate 3ba ($41.8 \mathrm{mg}, 99 \%$) as colorless needles.

Crossover Reaction of 22 and 24 (Scheme 11). To a stirred solution of the propargylic carbonate $22(20.4 \mathrm{mg}, 0.074 \mathrm{mmol})$ and $24(23.5$ $\mathrm{mg}, 0.074 \mathrm{mmol})$ in dioxane $(2 \mathrm{~mL})$ in a sealed tube were added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(7.2 \mathrm{mg}, 0.007 \mathrm{mmol})$ and dppe $(11.1 \mathrm{mg}, 0.0278$ mmol) at room temperature. After stirring was continued for 4 h at room temperature, the reaction mixture was concentrated, and the residue was chromatographed on silica gel with hexane-AcOEt (92:8 v / v) as eluent to give the cyclic carbonates $\mathbf{3 b d}(9.7 \mathrm{mg}, \mathbf{2 4 \%})$, $\mathbf{3} \mathbf{b a}$ ($9.5 \mathrm{mg}, 21 \%$), 3cd ($9.8 \mathrm{mg}, 23 \%$), and 3ca ($10.8 \mathrm{mg}, 23 \%$) as a colorless oil.

Acknowledgment. This work was supported in part by the Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists (M.Y.) and Scientific

Research on Priority Areas (A) "Exploitation of Multi Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supporting Information Available: Characterization data of all new compounds, synthetic procedures of substrates $\mathbf{1 a}-\mathbf{1 r}$,

12-15, and 22-24. NOESY correlations of 30a and 5ra. Procedure and characterization data for the determination of the absolute configuration of $\mathbf{3 g a}$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0340681

[^0]: (1) Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R. Chem. Rev. 2001, 101, 953.
 (2) (a) Vol'pin, M. E.; Kolominkov, I. S. Pure Appl. Chem. 1973, 33, 567. (b) Eisenberg R.; Hendriksen, D. E. Adv. Catal. 1979, 28, 79. (c) Ibers, J. A. Chem. Soc. Rev. 1982, 11, 57. (d) Haruki, E.; Ito, T.; Yamamoto, A.; Yamazaki, N.; Higashi, F.; Inoue, S. In Organic and Bioorganic Chemistry of Carbon Dioxide; Inoue, S., Yamazaki, N., Eds.; Kodansha: Tokyo, 1982; p 199. (e) Behr, A. In Catalysis in Cl Chemistry; Keim, W., Ed.; D. Reidel Publ. Co.: Dordrecht, Holland, 1983; p 169. (f) Walther, D. Coord. Chem. Rev. 1987, 79, 135. (g) Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (h) Cutler, A. R.; Hanna, P. K.; Vites, J. C. Chem. Rev. 1988, 88, 1363. (i) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661. (j) Behr, A. Carbon Dioxide Activation by Metal Complexes; VCH: Weinhaim, 1988; p 91. (k) Miller, J. D. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: New York, 1989; Vol. 2, p 1. (1) Halmann, M. M. Chemical Fixation of Carbon Dioxide. Methods for Recycling CO_{2} into Useful Products; CRC Press: Boca Raton, FL, 1993. (m) Creutz, C. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Sullivan, B. P., Krist, K., Guard, H. E., Eds.; Elsevier: Amsterdam, 1993; Chapter 2. (n) Aresta, M.; Quaranta, E.; Tommasi, I. New J. Chem. 1994, 18, 133. (o) Leitner, W. Coord. Chem. Rev. 1996, 153, 127. (p) Gibson, D. H. Chem. Rev. 1996, 96, 2063. (q) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (r) Walther, D.; Ruben, M.; Rau, S. Coord. Chem. Rev. 1999, 182, 67.

[^1]: (3) (a) Fujinami, T.; Suzuki, T.; Kamiya, M.; Fukuzawa, S.; Sakai, S. Chem. Lett. 1985, 199. (b) Trost, B. M.; Angle, S. R. J. Am. Chem. Soc. 1985, 107, 6123. (c) Trost, B. M.; Lynch, J. K.; Angle, S. R. Tetrahedron Lett. 1987, 28, 375. (d) Wershofen, S.; Scharf, H. D. Synthesis 1988, 854. (e) Suzuki, S.; Fujita, Y.; Kobayashi, Y.; Sato, F. Tetrahedron Lett. 1989, 30, 3487.
 (4) Palladium-catalyzed CO_{2} fixation of alkadienols with aryl halides via π-allylpalladium complex is also known: Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. Bull. Chem. Soc. Jpn. 1999, 72, 1063.
 (5) For examples of decarboxylation, see: (a) Krapcho, A. P. Synthesis 1982, 805. (b) Schäfer, H. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, p 633. (c) Crich, D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 717.

[^2]: (6) For reviews of palladium-catalyzed reactions of allylic compounds: (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (b) Tsuji, J. Pure Appl. Chem. 1982, 54, 197. (c) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p 799. (d) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985. (e) Tsuji, J. J. Organomet. Chem. 1986, 300, 281. (f) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140. (g) Tsuji, J. Organic Synthesis with Palladium Compounds; Springer-Verlag: New York, 1990. (h) Godleski, S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon: Oxford, 1991; Vol. 4, p 585. (i) Tsuji, J. Palladium Reagents and Catalysts; John Wiley and Sons: Chichester, 1995.
 (7) For reviews of palladium-catalyzed reactions of propargylic carbonates: (a) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140. (b) Tsuji, J. Tetrahedron 1986, 42, 4361. (c) Tsuji, J.; Mandai, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 2589.
 (8) The results of our preliminary studies have been published: Yoshida, M.; Ihara, M. Angew. Chem., Int. Ed. 2001, 40, 616.

[^3]: (9) Tsutsumi, K.; Ogoshi, S.; Nishiguchi, S.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 1938. (b) Tsutsumi, K.; Kawase, T.; Kakiuchi, K.; Ogoshi, S.; Okada, Y.; Kurosawa, H. Bull. Chem. Soc. Jpn. 1999, 72, 2687.
 (10) For other examples of similar palladium-catalyzed reactions of propargyl carbonates with nucleophiles, see: (a) Minami, I.; Yuhara, M.; Watanabe, H.; Tsuji, J. J. Organomet. Chem. 1987, 334, 225. (b) Fournier-Nguefack, C.; Lhoste, P.; Sinou, D. Synlett 1996, 553. (c) Yoshida, M.; Nemoto, H.; Ihara, M. Tetrahedron Lett. 1999, 40, 8583. (d) Labrosse, J. R.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1999, 40, 9025. (e) Labrosse, J. R.; Lhoste, P.; Sinou, D. Org. Lett. 2000, 2, 527. (f) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2001, 42, 4869. (g) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43, 1499.
 (11) For examples of similar reactions that form dihydrofurans and epoxides via π-allylpalladium complexes, see: (a) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387. (b) Ma, S.; Zhao, S. J. Am. Chem. Soc. 1999, 121, 7943.
 (12) Bäckvall et al. reported that a palladium-catalyzed reaction of an allylic carbonate in the presence of an amine leads to allylic carbamates as a byproduct. The reaction proceeds via nucleophilic attack on the π-allylpalladium intermediate by $\mathrm{R}_{2} \mathrm{NCOO}^{-}$, which is generated in situ from CO_{2} and the amine. Bäckvall, J. E.; Granberg, K. L.; Heumann, A. Isr. J. Chem. 1991, 31, 17.

[^4]: (13) (a) Cuvigny, T.; Julia, M.; Rolande, C. J. Organomet. Chem. 1985, 285, 395. (b) Akermark, B.; Krakenberger, B.; Hanson, S.; Vitagliano, A. Organometallics 1987, 6, 620. (c) Akermark, B.; Zetterberg, K.; Hansson, S.; Krakenberger, B.; Vitagliano, A. J. Organomet. Chem. 1987, 335, 133. (d) Åkermark, B.; Hansson, S.; Vigagliano, A. J. Am. Chem. Soc. 1990, 112, 4587. (e) Sjögren, M.; Hansson, S.; Norrby, P.-O.; Åkermark, B.; Cucciolito, M. E.; Vitagliano, A. Organometallics 1992, 11, 3954. (f) Sjögren, M. P. T.; Hansson, S.; Åkermark, B.; Vitagliano, A. Organometallics 1994, 13, 1963.
 (14) Examples about palladium-catalyzed asymmetric intramolecular cyclizations via π-allylpalladium speacies, see: (a) Yamamoto, K.; Tsuji, J. Tetrahedron Lett. 1982, 23, 3089. (b) Genêt, J. P.; Grisoni, S. Tetrahedron Lett. 1989, 29, 4543. (c) Takemoto, T.; Nishikimi, M.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1992, 33, 3531. (d) Koch, G.; Pfaltz, A. Tetrahedron: Asymmetry 1996, 7, 2213. (e) Trost, B. M.; Krische, M. J.; Radinov, R.; Zanoni, G. J. Am. Chem. Soc. 1996, 118, 6297. (f) Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482. (g) Zenner, J. M.; Larock, R. C. J. Org. Chem. 1999, 64, 7312.
 (15) (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. (b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
 (16) For reports of enantioselective reactions via π-allylpalladium intermediate using BINAP, see: (a) Trost, B. M.; Murphy, D. J. Organometallics 1985, 4, 1113. (b) Yamaguchi, M.; Shima, T.; Yamagishi, T.; Hida, M. Tetrahedron Lett. 1990, 31, 5049. (c) Yamaguchi, M.; Shima, T.; Yamagishi, T.; Hida, M. Tetrahedron: Asymmetry 1991, 2, 663. (d) Kuwano, R.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 3236. (e) Kuwano, R.; Nishino, R.; Ito, Y. Org. Lett. 1999, 1, 837. (f) Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
 (17) (a) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Kaketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629. (b) Larksarp, C.; Alper, H. J. Am. Chem. Soc. 1997, 119, 3709.
 (18) Yoshizaki, H.; Satoh, H.; Sato, Y.; Nukui, S.; Shibasaki, M.; Mori, M. J. Org. Chem. 1995, 60, 2016.
 (19) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.
 (20) (a) Muller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232. (b) Lautens, M.; Fagnou, K.; Rovis, T. J. Am. Chem. Soc. 2000, 122, 5650.
 (21) Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482.

[^5]: ${ }^{a}$ All reactions are carried out in a sealed tube. ${ }^{b}$ The absolute configurations of the products were tentatively assigned by analogy with the optical rotatory power of (R)-3ga. ${ }^{c}$ Enantiomeric excesses are determined by chiral HPLC (CHIRALPAK AS or AD or OD-H). ${ }^{d} \mathrm{Ar}=p$-methoxyphenyl. ${ }^{e}$ Reactions are carried out by using $5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}, 10 \mathrm{~mol} \%$ (S)-BINAP ($\mathrm{Pd}: \mathrm{L}^{*}=1: 1$). ${ }^{f} \mathrm{Ar}=2$-methoxyphenyl. ${ }^{g} \mathrm{Ar}=1$-naphthyl.
 ties (Table 8, entries 1-4). Reactions of the acyclic substrates $\mathbf{1 f}, \mathbf{1 h}-\mathbf{1 l}$ were also investigated (entries 5-10). Reaction of the dimethyl-substituted propargylic carbonate if with 2a affords

